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A mathematical analysis is given for a self -consistent dynamic model
for rf sheaths in the frequency range between the ion and electron
plasma frequencies for arbitrary collision parameters and arbitrary rf
sheath voltages. Based on this analysis, an algorithm is developed 1o
solve the problem numerically in its full generality. Using the method
that is developed, it is found that the rf conductivity current causes an
asymmetrical behavior of the plasma-sheath interface and of the sheath
characteristics, but has little effect on the rf discharge current/voltage
characteristics.  «© 1994 Academic Press. Inc.

1. INTRODUCTION

Radio frequency (rf) discharges are encountered in a large
number of modern engineering technologies. Some of the
most commonly used applications are plasma processing for
manufacturing semiconductor chips, plasma chemistry,
gaseous Jasers, and rf light sources. For a successful design
and optimization of plasma technology devices based on
rf discharges, it is necessary to understand the specific
properties of the basic rf discharge parameters. A capacitive
rf discharge is a highly nonlinear phenomenon, mainly
because of the presence of the f sheaths that separate the rf
electrodes from the plasma. In the majority of appiications,
the impedance of the rf sheath is much greater than that
of the plasma, and the rf electrode sheaths have a strong
influence on the rf discharge electrical characteristics. The
physical processes in the rf sheaths directly influence the
type and rate of surface reactions that occur in plasma
processing reactors and are critical factors in efficiency
and durability of plasma sources based on capacitive rf
discharges.
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Different models have been developed to describe the
characteristics of the rf sheaths. A review of these models,
their strengths and deficiencies, can be found in Ref. [1]. A
comparison of different rf electrode sheath models can be
found in Ref [2]. A self-consistant hydrodynamic model
for the planar rf sheaths of a symmetrically driven rf
discharge was formulated in Ref [37]; in Ref [17], we
generalized it. In the moedel, we assumed an tf discharge
without emissive processes at the rf electrodes and we con-
sidered the case when the rf frequency and the gas pressure
satisfy the plasma opacity condition [1]. We also chose the
plasma density and the of {requency sufficiently high so that
the Debye radius and the amplitude of the electron oscilla-
tions at the plasma—sheath boundary are significantly less
than the electrode gap. Under these assumptions we have
studied the nonlinear dynamics of the rf sheath for a steplike
electron profile at the moving plasma-sheath interface.[!!
Figure 1 gives a qualitative representation of the immobile
ion distribution in the sheath. Under the action of the rf
ficld, the plasma-sheath interface oscillates between its two
extreme positions, the maximal sheath width and the
minimal sheath width. The position of the plasma-sheath
interface at any given time ¢ can therefore be described by a
periodic function x = §(¢) that achieves its maximum §, at
t=r,; and its minimum §, at r=r,. To the right of the
moving interface (in the plasma), the plasma neutrality is
preserved and the electron density is equal to the ion density.
To the left of the moving interface {in the sheath), the
electron density is equal to zero. Although from the physical
point of view the model in Ref. [1] is the most justified and
consistent, it leads to a complicated moving boundary
probiem that previously has had to be simplified in order to
be solved. A number of such simplified approaches have
appeared in the literature [4-6]. Mathematical simplifica-
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FIG. 1. Structure of the rf electrode sheath; #, is the ion density dis-

tribution, {n,> is the time-averaged electron density distribution, u is the
total sheath voltage, w, is the voltage at the minimal position of the
plasma—sheath interface, and u, is the voltage corresponding to the sheath
space charge.

tions, however, can lead to physical inconsistencies and
inaccuracies. In Ref [1], we were able to solve the
generalized model for arbitrary rf sheath voltages and
collision parameters under the single restrictive assumption
that the function § is symmetric with respect to its minimum
position at £ =,. Such an assumption is justified for heavy
ions such as mercury. A comparison of the analytical and
numerical solutions of the mathematical model with the
available experimental results for mercury vapor have
demonstrated a good agreement in corresponding values.
The mathematical analysis, which underiies the numerical
results, can be found in Ref [7]. The mathematical method
described in [7] solves the generalized model over a half
period and symmetrically extends over a full period the
solutions thus obtained. This method can be used only when
the function § is symmetric with respect to its minimum
position. In general, however, S is not symmetric because
of the conductivity current in the rf sheath. The rf sheath
conductivity current is proportional to the ion sound speed
and is neglegibly small for the heavy mercury ions [t . For
lighter ions, such as argon, the neglect of the conductivity
current might lead to inaccuracies.

Taking asymmetry into account requires new mathemati-
cal techniques for solving the moving boundary problem
that describes our generalized model [1]. In this paper, we
give a detailed mathematical analysis of the generalized
model and develop an algorithm for solving the moving
boundary problem numerically in its full generality. We
then use the method that we develop to obtain the charac-
teristics of the rfelectrode sheath for argon rf discharges and
to study the effect of the conductivity current on the sheath
characteristics.

2. FORMULATION OF THE MATHEMATICAL MODEL

The dynamic model of the electrode sheath in symmetri-
cally driven rf discharges in the frequency range between the
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ion and electron plasma frequencies for arbitrary collision
parameters and arbitrary tf sheath voltages can be
described by the following moving boundary hydrodynamic
problem {17.

The instantancous potential, ¥, in the sheath can be
found from the Poisson equation

x<8(n

x> 8(1). ()

dz_V_ {—4nen¢-, for
dx* 10, for

The stationary ion density distribution, »;, can be found
from the momentum-transfer equation

@-l-i d_V +ET"% E_O (2
Yax TM\ax) "M dx M )
and the continuity equation
d
—{(nv,)=0. (3)

dx

In Egs. (1)—(3), e is the electron charge, v, is the ion velocity,
M is the ion mass, T, is the ion temperature, F is the fric-
tional force, and (dV/dx) is the electric field in the sheath
averaged in time over an rf period. In what follows, we will
retain the ¢ ) notation for values that are time averaged
over an rf period. For a typical low pressure if discharge, the
frictional force is given by the formuia

F= (4)

(see [3, p. 108]), where 4, is the ion mean free path.

The equation describing the moving boundary § is
obtained from the equation for the rf current [ in the sheath,
and by setting I equal to the rf current at the plasma
boundary:

I=Id.+1e+1,-:enlu~1=en1a1m, (5
where
eT,'? Vo—Vy
= e = 6
1, enS[an] exp[ T, ] (6)

is the conduction current of the electrons,
I,- = —en,uy (7)

is the conduction current of the ions, and

pod e, ds S0 dn,
= en; dx =en —+eJ —dx
T L " S dr o di
is the sheath displacement current. In the Eqs. (5}-(8), T, is
the electron temperature in volts, m is the electron mass, v..
is the oscillatory electron velocity, a is the amplitude of the

(8)
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electron oscillations, w is the rf frequency, and v is the ion
velocity. Furthermore, index 0 indicates values at the
electrode, index 1 corresponds to the values at x=5,, and
index $ indicates values for x = 5(¢). The term V, — V' gives
the voltage between the 1f electrode and the moving
plasma-sheath interface. In order to solve the problem
{1)—(8), we specify the rf discharge current

I{t}y =1, cos(wt) (9
and obtain the summarized 1f sheath voltage V', across the
two sheaths {B]. Equations (I)}-(8) with appropriate
boundary conditions describe the dynamics of the rf sheath.
The boundary conditions are determined by the parameters
of the neutral plasma that is adjacent to the sheath at the
point x = §,. For convenience, we set ¥, =0. The boundary
between the plasma and the rf sheath is located at the point
x=_§,, where the ambipolar dc electric field on the plasma
side reaches the value

E, =T,/4p, (10)
with 4, the Debye radius at the plasma-sheath boundary
[97. Applied to the neutral plasma equations, this boundary
condition yields the value of the ambipolar (ion) velocity

e(T .+ 1,7 ndp |
== | 5

24,
Observe that p, is the velocity with which ions are injected
into the sheath [10]. For the collisionless sheath, 4, /4, <€ 1
holds and formula (11} becomes the well-known Bohm

criterion,
e(Je ]r) 2
v, —l € l =g,

(11)

7 {12)

where v is the ion sound speed.

The given problem can now be solved for one sheath, and
since the instantaneous rf currents in both sheaths are equal,
we can find the corresponding results for the other sheath by
shifting the phase of the solution by wt=n.

The physical justifications and a more detailed descrip-
tion of the model (1)-(11) can be found in Ref [17.

In order to solve the system (1)-(11), we introduce new
dimensionless variables;

X
=T 6=Q)I, = =T = ]
¢ iy w= - n=<{uy
s ,
/L=T‘_*e y=11 p=‘j‘is 0-=U_B5 {13)
’LD[ nl v Dy U—--l
7 p, T, M e
= rT=— =] ——
? 24,° T’ "=\ 2am

349

Using the new variables (13) and assuming that t =0, the
system (1)}-(11) can be reduced to the following system: the
Poisson equation

E< D)

4, 8) (y(E).  for
"{ esa0;

a0, for
the equation for the ion distribution y(£)

dduy 1 @+ @« _
d T (1+a) v dE (1+a)

0; (15)

and the equation for the sheath current

o [7p(4(0)) exp[1(A(8), 8) —u(0, )] — (1 +2) =]

Y(AO) di_
+ E_C

os 6. (16)

Since the rf discharge is symmetric, the dc component of the
current in each sheath must be equal to zero, ie.,

{y(HO) exp[u(4(8), 0) —u(0,8)]> =y~ (1 + )~ % (17)
The conditions at the plasma-sheath boundary are

dui’.,, 0)

Wiy, 6)=0, dg

=—1, pi)=1 (18)

It is given that 4 is periodic,

There are four parameters in the problem: x ¢ [0, co] is
the collision parameter, p =0 is the oscillation parameter,
which is proportional to the amplitude of the electron
oscillations at the plasma-sheath boundary and describes
the rf discharge current, o <1 is the sheath conductivity
parameter and is proportional to the ton sound speed, and
y 15 a constant that depends on the mass of the gas (for
instance, y = 242 for mercury, y = 108 for argon, and y = 34
for helium).

Of primary interest is the dependence of the electrical
sheath characteristics on the parameters. In this paper we
concentrate mainly on the sheath conductivity parameter o.
It has been shown in Ref. [1] that for mercury vapor, the
effect of o on the sheath characteristics is negligibly small.
This is due to the fact that for heavy ions, such as mercury,
the solutions of the model are almost symmetric. The
assumption of symmetry and the neglect of ¢ also greatly
simplify the mathematical tools needed to sclve the model.
Whether or not ¢ can be neglected for light ions (such as
argen), has up to now remained an open question. For light
ions, one has to take into account the asymmetry of the
solutions, and this requires new mathematical techniques
in order to solve the model. In the next section these
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techniques will be developed, the system (14)-(18) will be
solved in its full generality, and the question of whether or
not ¢ can be neglected will be answered.

3. ANALYSIS

We make the following observations:

1. The function 4 is 2rn-periodic. Let T be the period of
Z. Then, since y does not depend on 8, the function u is
T-periodic in @. Setting dA{0 + T')/dt = dA(0)/dE, we obtain
from Eq. (16} that cos 0 =cos(8 + T') and thus T=2n.

2. Equation (16) implies that the point #,¢ [0, 2z],
where /4 achieves its maximum 4,, can be obtained from the
equation

8, =arc cos{oy exp(—u(0, 8, }) —c(1 +a) ). (19)

3. The first two observations imply that Eq. (17) is

equivalent to

L ) i
22 GO expLu(AB), 6)— (0, 6)] db
{—an
=yt (20)
4. Consider the function A on the interval

[#,—2r,8,]. Let 0, [0, — 2m, #, ] be such that A(#,) = 4,;
ie., 4 achieves its minimum at £#,. Then the function 2 is
strictly monotone decreasing {rom 4, to X, on the interval
[, — 2x, 8,] and strictly monotone increasing from 4, to 4,
on the interval [#., 8,]. Continuity of A implies that for
each 8% e [f,, #,] there exists a unique 4, [0, -2, 6,]
such that A(#*)=.i(0,) (seec Fig. 2). In physical terms, this
means that within one time period, the plasma—sheath inter-
face passes twice through ¢very position between 4, and A,.

5. In order to find {u«) one has to know the behavior
of u as a function of 8. Let € (45, 4) be arbitrary. Then, by

:3¢]
40 -

20

.5 -4 -3 -2 -1 0 1 2
5} (rad)

FIG. 2. Rf sheath width 1 versus the phase 0 = et for ¢ =0.03. The
phases 8_ and 8* correspond to the same value of 4, A(6, )= A*)
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the previous observation, there exist 8* e (f,, 8,) and &, e

(0; —2m, 8,) such that A(8*)=A(#,)= ¢ and ¢ > A(#) if and

only if 0 (8,, 0*). Thus, for a fixed arbitrary £ e [4,, 4,],

dlu(és 9) _ y(é)! fOr 9 € [61 _271', G*] v [6*1 Bl]
det o0, otherwise

(see Fig. 3) and, therefore,

d2<u>=<d2u(§,9)> 1{"‘ d’u(¢, 6)

praatl

e & /o

& —2r

1o 1 oo
=520, @+ [ @ as
1
=£(27r+9*—9*)y(q'). 2n
For £ [0, 4,], we obtain
dZ
) (22)

In order to solve Eqs. (15) and (21) and to obtain the func-
tions y and (), one has to know the values of ¢, and 8*
for each £. To find these values, we consider 8, as a function
of @*. Since A(0,) = A(8*), the function &,(6*) satisfies the
ordinary differential equation

d_f)_* = ﬁ @ (23)
df*  db* da

with the boundary condition 8,(8,) = &, — 2=,

6. Consider Eq.{14). Integrating this equation for
&> A(f) with the boundary condition (18), we find that
du(é, 8)/dé=—1 and w(&, 8)=4,— ¢ for all £> A{6) and
8e 8, —2n, ¢, 1. Continuity of both v and du/dZ imply that
u(A(6), )= 4, — A(8) and du(A(0), 8)/dé = —1. From now
on, we will let u(&, 8) = du(¢, 8)/dL.

d*Urd £

g (rad)

FI1G. 3. Rf sheath space charge #?u(¢, 8)/dE? versus the phase f.
Note that d2u(¢, 0)/dE2 =0 for 0, <8<t*



SYMMETRICALLY DRIVEN RF DISCHARGES

7. Integrating Eq. (14) for 0 ¢ € A(0), we obtain for
allfe[#, —2n,0,]:

A1)
wE Gy =—1—[ yy)dy

[ S
| owars ] vy
=5(8,0,) —0(46), 0,)— 1. (24)

Integrating Eq. (14) once again using (24),

A(0)
W(E 0= 7y~ 40) [ oty 0)
a " 0
== HO = [ o B dy

Al0) .
+[ w0, 8))+ 1) dy

4

=0, = H0) —j v, 0,) dy + j ol 0,)

4 Ay

+ [o{A(8), 6,)+ 13[A(0) —£]
= 21— &+ o(A8), 0)[MB) —¢]

Fu(é, 0,)—u(A(8), 0, (25)
In particular,
w0, 8) — oAy, ) =00, 8,)—v(A,, 0)) (26)
and
u(0, 8) —u(i,, 0y=u(0, 8,)—ulis, 0,)
+ A5 [0, 0,)—v(4,, )] (27)

Thus it is sufficient to solve the given system for 8 =8, and
then use formulas (24) and (25) in order to obtain the
solutions for all 6.

8. Observation 7 implies that (<, 8,)=u(E, 6*) and
o(&,0,)=0v(&, 0%) if 0,,8%e [0, —2r,0,] are such that
A(8,)=A(6%).

The observations given above show that in order to find
a solution to the given problem, we have to consider two
regions between the plasma and the electrode. In the first
region, A, < &< 4, and the given problem is described by
Eqgs. {14)-(16), (21}, and (23) with the boundary conditions
(18), together with d(ud/dé=-~1and 0, (8,)=0,—2xn. In
the second region, 0 &< 4,, and the given problem is
described by Eqs. (14)-(16) and (22) with the corresponding
boundary conditions at ¢ = 4,.

9. In order to solve the problem in the region
A, < &< A, we introduce a new variable ¢ € [0, —2n, 8,],
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consider £ ={£(¢), and let s(@)={(p)—4,; be the solution
of the equation

ds P cos ¢ po(l +o)~ 12

do” slp)+ A} yisto)+4y)

—poy exp[ —s(@)—u(0, 8)]

(iS)

with the initial condition s(#,)=0. It follows from
Eq.(16) and observation 6 that s(#)=A(6)—-4,. Using
parameterization (28), we introduce new variables
F@)= (&) e 0)=ulZ 0), B, 0)=u(0) Alp)=
u(€)y =n(&), wlp)=d{u(l)>/dl =w(£). With these new
variables, since ds/dp =df/dp, the given problem is
equivalent to the system (with the tildas omitted in
Eqgs. {29)-(36)):

du(p, 6) ds

P v, 8) To (29)
y(o)(ds/de).
av(e, 8) _ for 6el[0,—2m0,JUL0%6,1 (30)
di .
0, otherwise
a
d—"— w((p);% (31)
d 1 ) d. . !
omse| 2 s () w0 o & )
j—(};: [—ap{p)— (1 +a) ¥ () wle)] Z;% (33)
ﬁ:p cos @ pofl +a)" 12
dp  yle) i)
— poyexpl —s(¢) —u(0, §)] (34)
[cos p+oll o) — U:D’(W}
ﬂ: xexp[—u(O, ‘P)_S((P)] (35)

deo [Cos y+o(l+a) - GY)’('/’)]
xexp[ —u(0, ¥)—s(yi]

where 0, =t and 0*=¢ if ¢pe[0,,0,], and O,=¢
and *=y if pe[f,—2n,8,]. Note that s{y)=s{g),
y()= y(p), and by observation 8, (0, p)=u(0, ¢}
Furthermore, observation 7 implies that it is sufficient to
solve system ({29)-(35) for pe[8,, 8,1, ie, for ds/dp >0
and signids/dp}=1. Observation 7 also implies that it is
sufficient to solve the system given above for § =6,, and to
use formulas {24) and (25) to obtain the solution for all 8.
Thus the system above reduces to a system of ordinary
differential equations which can be solved numerically with
the initial conditions

“(01, 9):01
W(al)z _1’

v(f,,8)=—1,

6,)=0,
n(6,) (36)
5(0)=0,

(0,) =8, —2x,
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provided that (0, ¢)is known, One then obtains the values
of the solution at @ = §,, which correspond to the values of
the original problem at & = 4,.

Note that the introduction of the variable s(¢) enabled us
to describe the moving boundary by a straight line 8 = ¢,
rather than by an unknown curve A(6) (see also Ref. [7]).

10. Comnsider the region << 4, In this region, the
given problem is equivalent to the system:

du—féﬂz‘"f’ % (37)
HED e .
@ )
z—?=y(é_) (40)
%‘ —ap(&) — (1 +) p*(E) w(l), (41)

where n and w are as in the previous observation. As before,
it is sufficient to solve this system for # =48, and to use for-
mulas (24} and (25) to obtain the solution for all 8. Thus
system (37)-(41) reduces to a system of ordinary differential
equations, which can be solved using the values of the
solution at £ = 4, as initial conditions, provided that 4, is
known.

If. In order to solve system (29)-(35) and system
{37y {41), we find the values of A, and u(0, 8) through
an iteration method using Eq.(20), which in the new
coordinates becomes

1

[ 4(0) expL—s(8) - u(0, 6)] db
27{ & — 2=

=77 (1 +a2)7 "2 (42)

4. RESULTS AND DISCUSSION

The foregoing analysis has enabled us to obtain a com-
plete numerical solution for the given problem without
resorting to any restrictive assumptions. The calculations
were performed for a symmetrically driven f discharge in
argon with moderate collisionality and the sheath conduc-
tivity parameter ¢ =003 which is typical in experiments.
The value of the collision parameter « varies in the experi-
ment for constant gas pressures [117]. In order to obtain
results in a form that is more convenient for applications, we
have chosen a different collision parameter f§=2ap/n=
a,/4;, and we have considered the case § = 1. In the experi-
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ment, the collision parameter § remained constant for con-
stant gas pressures. In order to emphasize the nonlinearity
caused by the asymmetrical behavior of the plasma—sheath
interface, A(#), we have considered values for the oscillation
parameter up to p = 7. This maximal value of p corresponds
to rf sheath voltages of 1-2kV, the maximal voltages
encountered in experiments, Figure 2 shows a small asym-
metry in the function A(f) with respect to its minimal
position at 8 ~ —1.36 for ¢ = 0.03. This asymmetry leads to
corresponding asymmetries in the soltions to the problem,
in particular in the summarized 1f sheath voltage
v, =u(0, 8)—u(0, 8+ n). (43)
For ¢ =0.03, the normalized waveforms of the summarized
rf sheath voltage u, /max(u,) are given in Fig. 4 for small
{p=0.3) and large {p=7T) tf sheath voltages. As one can
see, the behavior of u, is almost symmetric for small rf
sheath voltages. For large rf sheath voltages, the asymmetric
behavior of #, 1s more pronounced. From the practical point
of view, it is important to know the effect of asymmetry on
the integral characteristic of the sheath which governs the
current/voitage characteristics of the rf discharge. In
capacitive rf discharges, the current/voltage characteristic is
almost entirely determined by the rf sheath capacitance
J=CaoV,, (44)
where J is the rf discharge current density, e is the driving
frequency, and C is the sheath capacitance per unit of the
discharge cross section. Moreover, C = (8mdy4, )7, where
Ao 1s the capacitive {averaged) rf sheath thickness [1].
Figure 5 demonstrates the dependence of 2, on the
amplitude of the summarized rf sheath voltage u! for the
symmetric (o =0) and the asymmetric (o =0.03) cases. As
one can see, even for very large rf sheath voltages (u! ~ 700),
the difference in the values for 4, in both cases is negligibly

Uc / Ue max

8 (rad)

FIG. 4. Waveforms of the summarized f sheath voltage for ¢ =0.03:
label 1 corresponds to small rf sheath oscillations (p =0.3); label 2
corresponds to large rf sheath oscillations (p = 7).
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Ue

FIG. 5. Capacitive rf sheath width 1, versus the rf sheath voltage x| for
o =0 (upper curve) and o = 0.03 (lower curve). Note that the two curves
almost coincide.

small. Thus the rf sheath capacitance is independent of the
rf sheath conductivity current. In obtaining the rf discharge
current/voltage characteristic, one can thercfore neglect the
sheath conductivity current and simplify the computations
by setting 0 =0,

5. CONCLUSION
The rf sheath conductivity current causes an asym-

metrical behavior of the plasma-sheath interface with
respect to its minimum position. This asymmetry leads to
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corresponding asymmetries in the sheath characteristics,
particularly in the summarized if sheath voltage. The
asymmetric behavior is more pronounced for large rf sheath
voltages. The rf sheath capacitance, however, is almost
independent of the rf sheath conductivity current. In
obtaining the rf discharge current/voltage characteristic, the
rf sheath conductivity current can therefore be neglected.
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